SOLAR PV STAND-ALONE SYSTEMS

Good Practice Guide: Small System Sizing

	Step 3: Size Battery Bank	Example:
Battery Sizing	Determine ② DC system voltage, typically 12 V for small (< 1 kWh) and 24V for intermediate daily loads	BATTERY BANK SIZING
	Example: 12V system voltage	Average Daily DC Energy 459 Wh/day Wh/day
	> Determine ③ the number of days a fully charged battery system can	(2) DC System Voltage 12 VDC
	supply power without further charging (days of autonomy), typically	(3) Autonomy 5 days
	3 – 5 days	(a) Required Battery-Bank Output
	Calculate ④ daily battery capacity demand = ① total daily energy requirement / ② system voltage * ③ days of autonomy	= (1) / (2) * (3)
	Example: 459Wh/day / 12V x 5 days = 191Ah	6 Battery-Bank Rated Capacity
	Determine (5) depth of discharge (DoD) factor for selected battery, typically 20 - 80%	= ④ / ⑤
	 Calculate 6 required battery capacity = 4 daily battery capacity demand (5 DoD 	Selected Battery Rated Capacity 256
	Example: $101Ah / 0.75 = 255Ah$	Number of Batteries in Series 2
	Select deep discharge batteries, if possible	Number of Battery Strings in Parallel
	Example: 2 x 6V batteries in series with 2564b capacity	Total Number of Batteries 2
	Example. 2 x ov ballenes in series with 200An capacity	Actual Battery-Bank Rated Capacity 256 Ah
		1
PV Array Sizing	Step 4: Size PV Array	Example:
	Estimate ④ battery charging efficiency (typically 80 – 90%)	ARRAY SIZING
	Estimate (5) soiling factor for installation (typically 0.9 – 1.0)	1 Average Daily DC Energy Consumption 459 Wh/day for Critical Design Month
	Calculate required charging current from PV array = daily demand on battery	Critical Design Month Insolation 4.49 PSH/da DC Switzm Values 12.0 VOC
	capacity / critical design month insolation / system voltage / battery charging	(a) DC System Voltage 12.0 VDC (b) Battery Charging Efficiency 90%
	efficiency / soiling factor: (6) = $(1/(2)/(3)/(4)/(5)$	Soiling Factor 95% Required Array Maximum-Power Current
	Example: 459VVI/day / 4.49 psr/day / 12V / 0.90 / 0.95 = 10A	= ①/②/③/④/⑤ ⑦Temperature Coefficient for Voltage -0.004 / 'C
	Esumate (a) maximum module temperature & (a) rating reference temperature (typically 25°C)	(8) Maximum Expected Module Temperature 60 °C
	Calculate required charging voltage from PV array = system voltage	(9) Rating Reference Temperature 25 C (10) Required Array Maximum-Power Voltage 13.7 VDC
	(system voltage x temperature coefficient x (Max.Temperature - Reference	= (3 - (3 × (7) × (8 - 9))) Required Array Maximum-Power Voltage 164 W
	Temperature)): @ = ③ - (③ x ⑦ x (⑧ - ⑨))	= 1.2 x (0) x (6) (1) Module Nameplate Rated Maximum-Power Current 5.04
	Example: 12V-(12V x -0.004 x (60°C - 25°C)) = 13.7V	Module Nameplate Rated Maximum-Power Voltage 18.3 VDC 3 Module Nameplate Rated Maximum Power 90 W
	Calculate required charging power from PV array = 1.2 x required charging	(4) Number of Modules in Series = (10) / (12) 1
	voltage from PV array x required charging current from PV array = 1.2 x @ x 6	(5) Number of Modules in Parallel = (6) / (1)
	Example: $1.2 \times 13.7 \vee \times 10A = 164 W$	Actual Array Rated Power 180 W
	Select appropriate PV modules, e.g. for 12 V system voltage	
	Calculate (round up) number of PV modules in series = required charging voltage / module rated voltage: (a) = (ii) / (iii)	Module nameplate rating:
	Example: 13.7 V / 18.3 V = 1 module	Maximum Power at STC (Pmax) 90W
	Calculate (round up) number of PV modules in parallel = required charging current / module rated current: @ = @ / @	Voltage at Pmax (Vmp) 18.3V
	Example: $10 \text{ A} / 5.04 \text{ A} = 2 \text{ modules}$	Current at Pmax (Imp)
	Calculate total number of modules in array = number of modules in series x	Open circuit voltage (Voc) 22.2V
	number of modules in parallel: (3) = (1) x (2)	Short circuit current (Isc) 5 384
	Example: 1 x 2 = 2 modules with 180 W total peak power	
	NOLE. THE TACTOR 1.2 ACCOUNTS FOR WINING IOSSES, Charge Controller IOSS, PV module overrating and other losses.	1
	Stop 5: Size Charge Controller and Inverter	Example:
Controller Sizing	Step 5. Size Charge Controller and Inverter	
	\sim Calculate charge controller minimum power current = short circuit current of PV module x number of modules in parallel x 1 25: (a) = (a) x (b) x 1 25	(1) Short-Circuit Current of PV Module 5.38 A (2) Number of PV Modules in Parallel 2
	Example: 5.38 A x 2 x 1.25 = 13.5 A	(a) Charge Controller Minimum Power Current = $1.25 \times (1) \times (2)$
	 Select appropriate charge controller 	
	Calculate inverter minimum power size = power of all AC appliances x	(4) Total AC Power of AC Appliances 63 W (5) Inverter Minimum Power 70, 0 W
	1.25: (5) = (4) x 1.25	= 1.25 x ④
	Example: 63 W x 1.25 = 78.8 W	Note: After correcting for voltage losses due to module
	 Select appropriate inverter 	temperature, ensure that voltage input from PV array is
	Note: The factor 1.25 is the safety factor for continuous operation	within voltage window of charge controller

Sizing of stand-alone systems requires a fine balance between cost, energy supply and demand as well as responsible behavior of operator/end-user

Step 1: Determine Daily Energy Requirement

- > List all DC appliances (loads) with their power ratings and daily usage
- > Calculate average daily energy consumption for each DC appliance: $(4) = (1) \times (2) \times (3)$
- > Total DC energy requirement from battery (5) = sum of individual DC load energy consumptions

Example: Total DC Energy Requirements = 228 Wh/day

- > List all AC appliances (if applicable) with their power ratings and daily usage
- Calculate average daily energy consumption for each AC appliance: $9 = 6 \times 7 \times 8$
- > Sum up total AC load (energy) consumption 1
- > Determine system wiring losses ① (typically 5-10% -SEIAPI recommends max. 5%)

Example: Wiring Losses = 5%

> Determine inverter losses (2) for AC loads (typical inverter efficiency: 80-90%)

Example: Inverter Efficiency = 85%

> Calculate total energy requirement from battery = total DC energy requirement + total AC load energy requirement (through inverter): (3) = (5)/(1-(1)) + ((0)/(2))

Example: Average Daily DC Energy Consumption = 459 Wh/day

Step 2: Determine Critical Design Month

- Find monthly mean solar insolation data in kWh/m²/day or peak sun hours (psh) for installation sites (e.g. NASA website http://eosweb.larc.nasa.gov/sse/)
- Divide daily DC energy requirements by available solar insolation values for different tilt angles: (3) = (1) / (2)
- > The critical design month is the month with the highest ratio of load to solar insolation. It defines the optimal tilt angle that results in the smallest array possible
- > Since lowest irradiation month mostly falls in the winter solstice, the best tilt angle for constant loads is "Latitude + 15 degree"

Example: Location: Rarotonga, Cook Islands"; Latitude : 21° 12' South, Longitude: 159° 46' West Critical design month is June with 4.49 psh for 36° tilt angle

Critical I

Energy Assessment

(3) Avg. Daily DC Energy Consumption = ((5) / (1-(1))) + ((10) / (12))

✓ Educate end-user on system

and product standards

Example:

LOAD ANALYSIS

DC LOADS

Appliance (Load)

Fluorescent light

Security light (CFL)

AC LOADS

Appliance (Load)

Cell phone charger

Color TV

expectations and budget requirements

✓ Integrate components into sustainable system ✓ Thorough training of end-user in operations and maintenance is essential for sustainability!

(1)

3

1

6

1

1

(5) Total DC Energy Consumption

10 Total AC Energy Consumption

(2)

Power Rating

(W)

15

6

(5) Total DC Energy Requiremen

0

Power Rating

(W)

60

3

10 Total AC Energy Requiremen

Total DC Powe

(11) Wiring Losses

(12) Inverter Efficiency

Total AC Power

3

Use

nours/da

4

8

⑧ Use

hours/da

3

2

51 N 63 W

228 Wh

186 Wh

459 Wh/day

5%

85%

Average Energy

= () x (2) x (3)

180

48

228

9

Average Energy

= 6 x 7 x 8

180

6

186

✓ Select appropriate, energy-efficient components based on load levels ✓ Comply to respective system design

college of technology ⊭ innovation

